Monotonically Convergent Algorithms for Bounded Quantum Controls

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonically Convergent Algorithms for Locally Constraint Quantum Controls

The problem of finding the optimal control in numerical computer simulations of quantum control phenomena is usually addressed through the introduction of monotonically convergent algorithms that are guaranteed to improve the cost functional at each step. A recent extension of these algorithms implements a search for a control with given bounds. Within this context, this paper will present a ge...

متن کامل

Monotonically convergent optimization in quantum control using Krotov's method.

The non-linear optimization method developed by A. Konnov and V. Krotov [Autom. Remote Cont. (Engl. Transl.) 60, 1427 (1999)] has been used previously to extend the capabilities of optimal control theory from the linear to the non-linear Schrödinger equation [S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002)]. Here we show that based on the Konnov-Krotov method, monotonically conver...

متن کامل

Monotonically Overrelaxed EM Algorithms

We explore the idea of overrelaxation for accelerating the expectation-maximization (EM) algorithm, focusing on preserving its simplicity and monotonic convergence properties. It is shown that in many cases a trivial modification in the M-step results in an algorithm that maintains monotonic increase in the log-likelihood, but can have an appreciably faster convergence rate, especially when EM ...

متن کامل

A general formulation of monotonically convergent algorithms in the control of quantum dynamics beyond the linear dipole interaction

Article history: Received 20 February 2010 Received in revised form 25 July 2010 Accepted 2 August 2010 Available online 10 August 2010

متن کامل

Monotonically convergent iterative learning control for linear discrete-time systems

In iterative learning control schemes for linear discrete time systems, conditions to guarantee the monotonic convergence of the tracking error norms are derived. By using the Markov parameters, it is shown in the time-domain that there exists a non-increasing function such that when the properly chosen constant learning gain is multiplied by this function, the convergence of the tracking error...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC Proceedings Volumes

سال: 2003

ISSN: 1474-6670

DOI: 10.1016/s1474-6670(17)38897-3